4 保证大体积混凝土质量的措施
4.1 严格控制骨料级配和合泥量
选用10.40mm 连续级配碎石(其中10.30mm 级配含量65% 左右), 细度模数2.80- 3.00 的中砂(通过0.315n 凹筛孔的砂不少于15% , 砂率控制在40%- 45%)。砂、石含泥量控制在1%以内, 并不得混有有机质等杂物, 杜绝使用海砂。
4.2 选择适当外加剂
可根据设计要求, 混凝土中掺加一定用量外加剂, 如防水剂、膨胀剂、减水剂、缓凝剂等外加剂。外加剂中糖钙能提高混凝土的和易性, 使用水量减少20% 左右, 水灰比可控制在0.55以下, 初凝延长到5h 左右。
4.3 选择合适水泥和严格控制水泥用量
优先采用525R 普通水泥, 425R 普通水泥等高标号水泥,以减少水泥用量。选用低热水泥, 减少水化热, 降低混凝土的温升值。并尽量选用后期强度( 90 或120 天) , 降低水泥量, 并延缓峰值。在满足设计和混凝土可泵性的前提下, 将425R 水泥用量控制在450kg/m3, 525R 水泥用量控制在360kg/m3.以降低混凝土温升, 降低混凝土所受的拉应力。
4.4 采用切实可行的施工工艺
根据泵送大体积混凝土的特点, 采用“ 分段定点, 一个坡度, 薄层浇筑, 循序推进, 一次到顶”的方法。这种自然流淌形成斜坡混凝土的方法, 能较好地适应泵送工艺, 避免混凝土输送管道经常拆除、冲洗和接长, 从而提高泵送效率, 简化混凝土的泌水处理, 保证上下层混凝土浇筑间隔不超过初凝时间。根据混凝土泵送时自然形成一个坡度的实际情况, 在每个浇筑带的前后布置两道振动器, 道布置在混凝土出料口, 主要解决上部混凝土的振实; 由于底层钢筋间距较密, 第二道布置在混凝土坡脚处, 以确保下部混凝土密实。随着浇筑的推进, 振动器也相应跟上, 以确保整个高度上混凝土的质量。由于大体积泵送混凝土表面水泥浆较厚, 故浇筑结束后须在初凝前用铁滚筒碾压数遍, 打磨压实, 以闭合混凝土的收水裂缝。
4.5 改进施工技术
施工时加强插筋位置的振捣、抹压、养护。由于钢筋是热的良导体, 易产生大的温度梯度, 这是裂缝产生的一个主要环节。同时加强初凝前的抹压, 以消除初期裂缝, 并加强早期养护, 提高混凝土抗拉强度。
4.6 加强技术管理
加强原材料的检验、试验工作。施工中严格按照方案及交底的要求指导施工, 明确分工, 责任到人。加强计量监测工作,定时检查并做好详细记录, 认真对待浇筑过程中可能出现的冷缝, 并采取措施加以杜绝。在变截面施工前, 一定要加强预测,并保证预测的科学性。同时在实施过程中, 要切实落实施工方案。
4.7 加适当预埋件
在混凝土易裂缝部位埋设应力应变传感片, 直接测试拉应力, 以便更直接控制混凝土( 调节保温保湿养护条件, 保证温度梯度) , 确保混凝土不裂缝。在基础面筋上加设铁丝网或小直径钢筋网, 以提高混凝土表面抗裂性( 中间温度筋可去掉) .如3.00m 厚承台设计时, 在承台中间设置了垫20@2 肋水平抗缩钢筋网片。采用“ 水平分层间隙”施工方法, 分两层进行浇筑, 间隙时间7d 以上, 分层厚度各1.5m, 抗缩钢筋网设置在下层1.5m 的上表面。在工期允许的情况下, 这种施工方法可降低内部温升、减少人8 加强混凝土的测温工作力、材料及机械设备的投入。
为及时掌握混凝土内部温升与表面温度的变化值, 在承台内埋没若干个测温点, 采用L 形布置, 每个测温点埋设温管2根01 根管底埋置于承台混凝土的中心位置, 测量混凝土中心的温升, 另一根管底距承台上表面100mm, 测量混凝土的表面温度, 测温管均露出混凝土表面100mm.用100 的红色水银温度计测温, 以方便读数。第l———5d 每2h 测温1 次, 第6d后每4h 测温1 次, 测至温度稳定为止。从已有施工经验的测温情况看, 混凝土内部温升的高峰值一般在3.5d 内产生, 3d 内温度可上升到或接近温升, 内外温差值在20℃左右, 控制在规范规定范围内, 未发现异常现象。
5 结束语
大体积混凝土施工难度较大, 混凝土产生裂缝的机率较多, 稍有差错将会造成无法估量的损失。为了降低经济损失, 所以要减少和控制裂缝的出现, 文中就这些问题作了一个简单的综述仅供参考。
来源:考试大-建筑工程类考试
责编:sf 纠错
[1] [2]